Cho hàm số y = f( x ) có đạo hàm f'( x ) = ( (x -1))(((x^2)- 2) )( ((x^4) - 4) ). Số điểm cực trị của hàm số y = f( x ) là:


Câu 104 Vận dụng

Cho hàm số $y = f\left( x \right)$ có đạo hàm $f'\left( x \right) = \left( {x -1}\right)\left({{x^2}- 2} \right)\left( {{x^4} - 4} \right)$. Số điểm cực trị của hàm số $y = f\left( x \right)$ là:


Đáp án đúng: d

Phương pháp giải

- Bước 1: Giải phương trình $f'\left( x \right) = 0$.

- Bước 2: Xét dấu đạo hàm và kết luận.

+ Các điểm mà đạo hàm đổi dấu từ âm sang dương là các điểm cực tiểu.

+ Các điểm mà đạo hàm đổi dấu từ dương sang âm là các điểm cực đại.

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.