Tìm tất cả các giá trị của tham số m để đường thẳng y =  - 2x + m cắt đồ thị (H) của hàm số y = ((2x + 3))((x + 2)) tại hai điểmA,(( ))B phân biệt sao cho P = k_1^(2018) + k_2^(2018) đạt giá trị nhỏ nhất (với (k_1),(k_2) là hệ số góc của tiếp tuyến tại A,(( ))B của đồ thị (H).


Câu 1062 Vận dụng

Tìm tất cả các giá trị của tham số $m$ để đường thẳng $y =  - 2x + m$ cắt đồ thị $(H)$ của hàm số $y = \dfrac{{2x + 3}}{{x + 2}}$ tại hai điểm$A,{\text{ }}B$ phân biệt sao cho $P = k_1^{2018} + k_2^{2018}$ đạt giá trị nhỏ nhất (với ${k_1},{k_2}$ là hệ số góc của tiếp tuyến tại $A,{\text{ }}B$ của đồ thị $(H)$.


Đáp án đúng: b

Phương pháp giải

+ Tính \(y'\).

+ Tìm điều kiện để đường thẳng $d$  cắt $\left( H \right)$ tại 2 điểm phân biệt.

+ Đánh giá và tìm GTNN của biểu thức \(P = k_1^{2018} + k_2^{2018}\) sử dụng bất đẳng thức Cô-si với \({k_1},{k_2}\) là hệ số góc của tiếp tuyến tại hai giao điểm của hai đồ thị hàm số.

+ Tìm điều kiện để $d$ đi qua giao điểm $I$ của $2$ đường tiệm cận của $\left( H \right)$.

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.