Cho (f( x ) = (((x^2)))((căn (1 - x) )) ) và ( (f( x ) =  - 2 (((( ((t^2) - m) ))^2)dt) ) ) với (t = căn (1 - x) ) , giá trị của m bằng ?


Câu 1416 Vận dụng

Cho \(f\left( x \right) = \dfrac{{{x^2}}}{{\sqrt {1 - x} }}\) và \(\int {f\left( x \right)dx =  - 2\int {{{\left( {{t^2} - m} \right)}^2}dt} } \) với \(t = \sqrt {1 - x} \) , giá trị của $m$ bằng ?


Đáp án đúng: c

Phương pháp giải

- Bước 1: Đặt \(t = u\left( x \right) = \sqrt {1 - x} \).

- Bước 2: Tính vi phân \(dt = u'\left( x \right)dx\).

- Bước 3: Biến đổi \(f\left( x \right)dx\) thành \(g\left( t \right)dt\).

- Bước 4: Tính nguyên hàm: \(\int {f\left( x \right)dx}  = \int {g\left( t \right)dt}  = G\left( t \right) + C = G\left( {u\left( x \right)} \right) + C\).

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.