Cho (F( x ) = ((x)((1 + căn (1 + x) ))) )  và (F( 3 ) - F( 0 ) = (a)(b) ) là phân số tối giản , a > 0. Tổng (a + b ) bằng ?


Câu 1418 Vận dụng

Cho\(F\left( x \right) = \int {\dfrac{x}{{1 + \sqrt {1 + x} }}dx} \)  và \(F\left( 3 \right) - F\left( 0 \right) = \dfrac{a}{b}\) là phân số tối giản , $a > 0$. Tổng \(a + b\) bằng ?


Đáp án đúng: c

Phương pháp giải

- Bước 1: Đặt \(t = u\left( x \right) = \sqrt {1 + x} \)

- Bước 2: Tính vi phân \(dt = u'\left( x \right)dx\)

- Bước 3: Biến đổi \(f\left( x \right)dx\) thành \(g\left( t \right)dt\)

- Bước 4: Tính nguyên hàm: \(\int {f\left( x \right)dx}  = \int {g\left( t \right)dt}  = G\left( t \right) + C = G\left( {u\left( x \right)} \right) + C\)

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.