Tìm nguyên hàm của hàm số f( x ) = (x^2)ln( (3x) )


Câu 1503 Thông hiểu

Tìm nguyên hàm của hàm số $f\left( x \right) = {x^2}ln\left( {3x} \right)$


Đáp án đúng: b

Phương pháp giải

Sử dụng phương pháp tích phân từng phần cho hàm logarit:

- Bước 1: Đặt \(\left\{ \begin{array}{l}u = \ln \left( {ax + b} \right)\\dv = f\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{a}{{\left( {ax + b} \right)}}dx\\v = \int {f\left( x \right)dx} \end{array} \right.\)

- Bước 2: Tính nguyên hàm theo công thức \(\int {f\left( x \right)\ln \left( {ax + b} \right)dx}  = uv - \int {vdu} \)

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.