Kết quả của tích phân (I = _1^2 ((())((xcăn (1 + (x^3)) ))) ) có dạng (I = aln 2 + bln ( (căn 2  - 1) ) + c ) với (a,b,c thuộc Q ). Khi đó giá trị của a bằng:


Câu 1929 Vận dụng

Kết quả của tích phân \(I = \int\limits_1^2 {\dfrac{{dx}}{{x\sqrt {1 + {x^3}} }}} \) có dạng \(I = a\ln 2 + b\ln \left( {\sqrt 2  - 1} \right) + c\) với \(a,b,c \in Q\). Khi đó giá trị của $a$ bằng:


Đáp án đúng: b

Phương pháp giải

+) Nhân cả tử và mẫu của hàm số dưới dấu tích phân với \({x^2}\).

+) Sử dụng phương pháp đổi biến để tính tích phân:

- Bước 1: Đặt \(t = u\left( x \right)\), đổi cận \(\left\{ \begin{array}{l}x = a \Rightarrow t = u\left( a \right) = a'\\x = b \Rightarrow t = u\left( b \right) = b'\end{array} \right.\) .

- Bước 2: Tính vi phân \(dt = u'\left( x \right)dx\).

- Bước 3: Biến đổi \(f\left( x \right)dx\) thành \(g\left( t \right)dt\).

- Bước 4: Tính tích phân \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_{a'}^{b'} {g\left( t \right)dt} \).

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.