Cho f( x ), , ,g( x ) là hai hàm số có đạo hàm liên tục trên đoạn [ (0;1) ] và thỏa mãn điều kiện _0^1 (g( x ).f'( x )( rm(d))x)  = 1,_0^1 (g'( x ).f( x )( rm(d))x)  = 2. Tính tích phân I = _0^1 ((([ (f( x ).g( x )) ])^ prime ) ,( rm(d))x) .


Câu 1936 Nhận biết

Cho $f\left( x \right),\,\,g\left( x \right)$ là hai hàm số có đạo hàm liên tục trên đoạn $\left[ {0;1} \right]$ và thỏa mãn điều kiện $\int\limits_0^1 {g\left( x \right).f'\left( x \right){\rm{d}}x}  = 1,\int\limits_0^1 {g'\left( x \right).f\left( x \right){\rm{d}}x}  = 2.$ Tính tích phân $I = \int\limits_0^1 {{{\left[ {f\left( x \right).g\left( x \right)} \right]}^\prime }\,{\rm{d}}x} .$


Đáp án đúng: c

Phương pháp giải

Sử dụng công thức của tích phân từng phần: \(\int\limits_a^b {udv}  = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

Trong các tích phân đã xuất hiện dạng vi phân \(f'\left( x \right)dx\) thì ta đặt \(dv = f'\left( x \right)dx\).

Và sử dụng công thức \(\int\limits_a^b {f'\left( x \right)dx}  = \left. {f\left( x \right)} \right|_a^b\).

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.