Cho hàm số (y = f( x ) ). Đồ thị hàm (y = f'( x ) ) như hình vẽ Đặt (g( x ) = 3f( x ) - (x^3) + 3x - m ), với (m ) là tham số thực. Điều kiện cần và đủ để bất phương trình (g( x ) >= 0 ) đúng với ( forall x thuộc [ ( - căn 3 ;căn 3 ) ] ) là:


Câu 24760 Vận dụng cao

Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm \(y = f'\left( x \right)\) như hình vẽ

Đặt \(g\left( x \right) = 3f\left( x \right) - {x^3} + 3x - m\), với \(m\) là tham số thực. Điều kiện cần và đủ để bất phương trình \(g\left( x \right) \ge 0\) đúng với \(\forall x \in \left[ { - \sqrt 3 ;\sqrt 3 } \right]\) là:


Đáp án đúng: a

Phương pháp giải

- Cô lập \(m\) từ bất phương trình \(g\left( x \right) \ge 0\) đưa về dạng \(h\left( x \right) \ge m\)

- Dùng phương pháp hàm số, xét hàm \(y = h\left( x \right)\) trên đoạn \(\left[ { - \sqrt 3 ;\sqrt 3 } \right]\)

- Bài toán thỏa \( \Leftrightarrow m \le \mathop {\min }\limits_{\left[ { - \sqrt 3 ;\sqrt 3 } \right]} h\left( x \right)\)

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.