Trong không gian với hệ tọa độ Oxyz, cho ba vector vec a = ( (2;3; - 5) );( mkern 1mu) ( mkern 1mu) vec b = ( (0; - 3;4) );( mkern 1mu) ( mkern 1mu) vec c = ( (1; - 2;3) ). Tọa độ vector vec n = 3 vec a + 2 vec b - vec c là:


Câu 3051 Thông hiểu

Trong không gian với hệ tọa độ Oxyz, cho ba vector $\vec a = \left( {2;3; - 5} \right);{\mkern 1mu} {\mkern 1mu} \vec b = \left( {0; - 3;4} \right);{\mkern 1mu} {\mkern 1mu} \vec c = \left( {1; - 2;3} \right)$. Tọa độ vector $\vec n = 3\vec a + 2\vec b - \vec c$ là:


Đáp án đúng: c

Phương pháp giải

Sử dụng các công thức \(k\overrightarrow a  \pm l\overrightarrow b  = \left( {k{a_1} \pm l{b_1};k{a_2} \pm l{b_2};k{a_3} \pm l{b_3}} \right)\)

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.