Trong không gian với hệ tọa độ Oxyz, cho ba vectơ ( vec a = ( (3; - 1; - 2) ), vec b = ( (1;2;m) ) ) và ( vec c = ( (5;1;7) ) ). Giá trị (m ) bằng bao nhiêu để ( vec c = [ ( vec a, vec b) ] ). 


Câu 3126 Vận dụng

Trong không gian với hệ tọa độ $Oxyz$, cho ba vectơ \(\vec a = \left( {3; - 1; - 2} \right),\vec b = \left( {1;2;m} \right)\) và \(\vec c = \left( {5;1;7} \right)\). Giá trị \(m\) bằng bao nhiêu để \(\vec c = \left[ {\vec a,\vec b} \right]\). 


Đáp án đúng: a

Phương pháp giải

- Tính tích có hướng \(\left[ {\overrightarrow a ,\overrightarrow b } \right]\).

- Dùng điều kiện hai véc tơ bằng nhau để tìm \(m\): \(\overrightarrow {{u_1}}  = \overrightarrow {{u_2}}  \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\\{z_1} = {z_2}\end{array} \right.\) 

Xem lời giải

...