Cho tứ diện đều ABCD có cạnh bằng 3. Gọi M, N là hai điểm thay đổi lần lượt thuộc cạnh BC, BD sao cho mặt phẳng (AMN) luôn vuông góc với mặt phẳng (BCD). Gọi V_1, V_2 lần lượt là giá trị lớn nhất và nhỏ nhất của thể tích khối tứ diện ABMN. Tính V_1 +V_2?


Câu 33713 Vận dụng cao

Cho tứ diện đều $ABCD $ có cạnh bằng $3.$ Gọi $M, N$ là hai điểm thay đổi lần lượt thuộc cạnh $BC, BD$ sao cho mặt phẳng $(AMN)$ luôn vuông góc với mặt phẳng $(BCD).$ Gọi $V_1, V_2$ lần lượt là giá trị lớn nhất và nhỏ nhất của thể tích khối tứ diện $ABMN.$ Tính $V_1 +V_2$?


Đáp án đúng: a

Phương pháp giải

Công thức tính thể tích khối chóp: \(V = \dfrac{1}{3}h{S_d}.\)

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.