Trong không gian Oxyz, cho mặt cầu (( S ): , ,(x^2) + (y^2) + (z^2) - 2x - 4y + 6z - 13 = 0 ) và đường thẳng (d: , ,((x + 1))(1) = ((y + 2))(1) = ((z - 1))(1) ). Tọa độ điểm M trên đường thẳng d sao cho từ M kẻ được 3 tiếp tuyến MA, MB, MC đến mặt cầu (S) (A, B, C là các tiếp điểm) thỏa mãn (góc (AMB) = (60^0); , ,góc (BMC) = (90^0); ,góc (CMA) = (120^0) ) có dạng (M( (a;b;c) ) ) với (a < 0 ). Tổng (a + b + c ) bằng:


Câu 34583 Vận dụng cao

Trong không gian Oxyz, cho mặt cầu \(\left( S \right):\,\,{x^2} + {y^2} + {z^2} - 2x - 4y + 6z - 13 = 0\) và đường thẳng \(d:\,\,\dfrac{{x + 1}}{1} = \dfrac{{y + 2}}{1} = \dfrac{{z - 1}}{1}\). Tọa độ điểm M trên đường thẳng d sao cho từ M kẻ được 3 tiếp tuyến MA, MB, MC đến mặt cầu (S) (A, B, C là các tiếp điểm) thỏa mãn \(\widehat {AMB} = {60^0};\,\,\widehat {BMC} = {90^0};\,\widehat {CMA} = {120^0}\) có dạng \(M\left( {a;b;c} \right)\) với \(a < 0\). Tổng \(a + b + c\) bằng:


Đáp án đúng: b

Phương pháp giải

Tính độ dài đoạn thẳng IM với I là tâm mặt cầu.

Tham số hóa tọa độ điểm M, sau đó dựa vào độ dài IM để tìm điểm M.

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.