Viết phương trình mặt phẳng ( P )  đi qua điểm M( (1;0; - 2) ) và vuông góc với hai mặt phẳng ( Q ),( R )  cho trước với ( Q ):x + 2y - 3z + 1 = 0  và ( (( rm( ))R) ):2x - 3y + z + 1 = 0 .


Câu 3491 Thông hiểu

Viết phương trình mặt phẳng $\left( P \right)$  đi qua điểm $M\left( {1;0; - 2} \right)$ và vuông góc với hai mặt phẳng $\left( Q \right),\left( R \right)$  cho trước với $\left( Q \right):x + 2y - 3z + 1 = 0$  và $\left( {{\rm{ }}R} \right):2x - 3y + z + 1 = 0$ .


Đáp án đúng: c

Phương pháp giải

Phương trình mặt phẳng $\left( P \right)$ vuông góc với hai mặt phẳng $\left( Q \right)$ và $\left( R \right)$ nên nhận \(\vec n = \left[ {\overrightarrow {{n_R}} ,\overrightarrow {{n_Q}} } \right]\) là vectơ pháp tuyến.

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.