Trong không gian với hệ tọa độ  Oxyz, cho mặt phẳng ( P ):ax + by + cz - 27 = 0 qua hai điểm A( (3,2,1) ),B( ( - 3,5,2) )  và vuông góc với mặt phẳng ( Q ):3x + y + z + 4 = 0 . Tính tổng S = a + b + c.


Câu 3496 Thông hiểu

Trong không gian với hệ tọa độ  $Oxyz$, cho mặt phẳng $\left( P \right):ax + by + cz - 27 = 0$ qua hai điểm $A\left( {3,2,1} \right),B\left( { - 3,5,2} \right)$  và vuông góc với mặt phẳng $\left( Q \right):3x + y + z + 4 = 0$ . Tính tổng $S = a + b + c$.


Đáp án đúng: d

Phương pháp giải

- Thay các tọa độ \(A,B\) vào phương trình của \(\left( P \right)\).

- $\left( P \right)$ vuông góc với $\left( Q \right)$ khi và chỉ khi \(\overrightarrow {{n_{(P)}}} .\overrightarrow {{n_{(Q)}}}  = 0\)

- Giải hệ trên ta được \(a,b,c\).

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.