Phương trình mặt phẳng (( P ) ) đi qua điểm (M( (3;4;1) ) ) và giao tuyến của hai mặt phẳng (( Q ):19x - 6y - 4z + 27 = 0 ) và (( R ):42x - 8y + 3z + 11 = 0 ) là:


Câu 3502 Vận dụng

Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {3;4;1} \right)\) và giao tuyến của hai mặt phẳng \(\left( Q \right):19x - 6y - 4z + 27 = 0\) và \(\left( R \right):42x - 8y + 3z + 11 = 0\) là:


Đáp án đúng: a

Phương pháp giải

Sử dụng lý thuyết chùm mặt phẳng:

Giả sử \(\left( P \right) \cap \left( Q \right) = d\) trong đó: $\left( P \right):{{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z+{{D}_{1}}=0~;\left( Q \right):{{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z+{{D}_{2}}=0$

Khi đó, mọi mặt phẳng chứa \(d\) đều có phương trình dạng: $m\left( {{A_1}x + {B_1}y + {C_1}z + {D_1}} \right) + n\left( {{A_2}x + {B_2}y + {C_2}z + {D_2}} \right) = 0$ với \({m^2} + {n^2} > 0\)

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.