Cho đường thẳng (d:((x - 1))(2) = ((y + 1))(( - 2)) = (z)(3) ) và mặt phẳng (( P ):x + y - z - 3 = 0 ). Tọa độ giao điểm của (d ) và (( P ) ) là:


Câu 3550 Nhận biết

Cho đường thẳng \(d:\dfrac{{x - 1}}{2} = \dfrac{{y + 1}}{{ - 2}} = \dfrac{z}{3}\) và mặt phẳng \(\left( P \right):x + y - z - 3 = 0\). Tọa độ giao điểm của \(d\) và \(\left( P \right)\) là:


Đáp án đúng: a

Phương pháp giải

\(d\) cắt \(\left( P \right)\) thì tọa độ giao điểm thỏa mãn \(\left\{ \begin{array}{l}ptd\\pt\left( P \right)\end{array} \right.\)

- Đưa phương trình của \(d\) về dạng tham số \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\)  và gọi \(M\left( {{x_0} + at;{y_0} + bt;{z_0} + ct} \right)\)

- Điểm \(\left\{ M \right\} = d \cap \left( P \right)\) thì tọa độ của \(M\) thỏa mãn \(\left( P \right) \Rightarrow \) thay tọa độ ở trên vào phương trình \(\left( P \right)\) để tìm \(t\).

Xem lời giải

...