Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d:(x)(2) = ((z - 3))(1) = ((y - 2))(1) )  và hai mặt phẳng (P): x – 2y + 2z = 0. (Q): x – 2y + 3z -5 =0. Mặt cầu (S) có tâm I là giao điểm của đường thẳng d và mặt phẳng (P). Mặt phẳng (Q) tiếp xúc với mặt cầu (S). Viết phương trình của mặt cầu (S).


Câu 3670 Vận dụng

Trong không gian với hệ tọa độ $Oxyz$, cho đường thẳng \(d:\dfrac{x}{2} = \dfrac{{z - 3}}{1} = \dfrac{{y - 2}}{1}\)  và hai mặt phẳng $(P): x – 2y + 2z = 0. (Q): x – 2y + 3z -5 =0$. Mặt cầu $(S)$ có tâm $I $ là giao điểm của đường thẳng $d$ và mặt phẳng $(P)$. Mặt phẳng $(Q)$ tiếp xúc với mặt cầu $(S)$. Viết phương trình của mặt cầu $(S)$.


Đáp án đúng: c

Phương pháp giải

Sử dụng các dữ kiện của bài toán để tìm bán kính và tâm của mặt cầu

+Tâm là giao điểm của đường thẳng và mặt phẳng

+Bán kính là khoảng cách từ tâm tới mặt phẳng $(Q)$ (do mặt cầu tiếp xúc với mặt phẳng)

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.