Cho phương trình: ((x^2) - 2(m - 1)x + (m^2) - 3m = 0 ).  Tìm m để phương trình có 2  nghiệm phân biệt ((x_1),(x_2) ) thỏa mãn (x_1^2 + x_2^2 = 8 ).                


Câu 40101 Vận dụng

Cho phương trình: \({x^2} - 2(m - 1)x + {m^2} - 3m = 0\). 

Tìm $m$ để phương trình có $2$  nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 8\).                


Đáp án đúng: a

Phương pháp giải

- Trước tiên ta tìm điều kiện của \(m\) để phương trình đã cho có hai nghiệm phân biệt \({x_1},{x_2}\,(\Delta ' > 0)\).

- Ta biến đổi biểu thức: \({x_1}^2 + {x_2}^2\) về biểu thức có chứa: ${x_1} + {x_2}$ và ${x_1}{x_2}$ rồi từ đó ta tìm được giá trị của \(m\).

- Đối chiếu với điều kiện xác định của \(m\) để tìm được giá trị thỏa mãn yêu cầu của bài toán.

Xem lời giải

...

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , Cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.