Một vật dao động điều hòa với phương trình: (x = 8c( rm(os))( (2pi t - (pi )(6)) )cm ). Thời điểm lần thứ 2010 kể từ lúc bắt đầu dao động, vật qua vị trí có vận tốc v= -8π cm/s là bao nhiêu?


Câu 445 Vận dụng

Một vật dao động điều hòa với phương trình: \(x = 8c{\rm{os}}\left( {2\pi t - \dfrac{\pi }{6}} \right)cm\). Thời điểm lần thứ $2010$ kể từ lúc bắt đầu dao động, vật qua vị trí có vận tốc $v= -8π cm/s$ là bao nhiêu?


Đáp án đúng: a

Phương pháp giải

+ Sử dụng công thức xác định chu kỳ T: \(T = \dfrac{{2\pi }}{\omega }\)

+ Sử dụng công thức xác định thời điểm vật đi qua li độ x lần thứ n (với n chẵn) : \(t = \dfrac{{n - 2}}{2}T + {t_2}\)

+ Xác định vị trí tại thời điểm t=0 (x,v)

+ Sử dụng hệ thức độc lập A-x-v: \({A^2} = {x^2} + \dfrac{{{v^2}}}{{{\omega ^2}}}\)

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.