Với các chữ số 0,1,2,3,4,5  có thể lập được bao nhiêu số gồm 8 chữ số, trong đó chữ số 1  có mặt 3  lần, mỗi chữ số khác có mặt đúng 1  lần.


Câu 4752 Vận dụng

Với các chữ số $0,1,2,3,4,5$  có thể lập được bao nhiêu số gồm $8$ chữ số, trong đó chữ số $1$  có mặt $3$  lần, mỗi chữ số khác có mặt đúng $1$  lần.


Đáp án đúng: c

Phương pháp giải

- Coi việc chữ số \(1\) lặp lại \(3\) lần thành ba chữ số \(1\) nên coi như tìm số các số có \(8\) chữ số được lập thành từ các chữ số $0,1,1,1,2,3,4,5$ và chữ số đầu khác \(0\).

- Sử dụng quy tắc nhân để tính số cách xếp \(8\) chữ số trên.

- Vì chữ số \(1\) lặp lại \(3\) lần nên ta cần chia cho \(3!\) để tính số các số cần tìm.

Xem lời giải

...

Nhóm 2K5 ôn thi đánh giá năng lực 2023 miễn phí

facebook

Theo dõi Vừng ơi trên facebook


>> Học trực tuyến Lớp 11 năm học mới trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.