Cho x là số thực dương. Khai triển nhị thức Newton của biểu thức (( ((x^2) + (1)(x)) )^(12)) ta có hệ số của số hạng chứa (x^m) bằng 495. Tìm tất cả các giá trị của tham số m. 


Câu 4810 Thông hiểu

Cho $x$ là số thực dương. Khai triển nhị thức Newton của biểu thức ${\left( {{x^2} + \dfrac{1}{x}} \right)^{12}}$ ta có hệ số của số hạng chứa ${x^m}$ bằng $495.$ Tìm tất cả các giá trị của tham số $m.$ 


Đáp án đúng: c

Phương pháp giải

Sử dụng công thức tổng quát ${{\left( a+b \right)}^{n}}=\sum\limits_{k\,=\,0}^{n}{C_{n}^{k}}.{{a}^{n\,-\,k}}.{{b}^{k}}\,\,\xrightarrow{{}}$ Tìm hệ số của số hạng cần tìm.

Xem lời giải

...

Bài tập có liên quan

Nhóm 2K5 ôn thi đánh giá năng lực 2023 miễn phí

facebook

Theo dõi Vừng ơi trên facebook


>> Học trực tuyến Lớp 11 năm học mới trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.