Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình ((m^2)( ((x^4) - 1) ) + m( ((x^2) - 1) ) - 6( (x - 1) ) >= 0 ) đúng với mọi (x thuộc R ). Tổng giá trị của tất cả các phần tử thuộc S bằng:


Câu 59746 Vận dụng cao

Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình \({m^2}\left( {{x^4} - 1} \right) + m\left( {{x^2} - 1} \right) - 6\left( {x - 1} \right) \ge 0\) đúng với mọi \(x \in R\). Tổng giá trị của tất cả các phần tử thuộc S bằng:


Đáp án đúng: c

Phương pháp giải

+) Đưa phương trình đã cho về dạng tích, có nhân tử \(f\left( x \right) = \left( {x - 1} \right)g\left( x \right)\).

+) Để bất phương trình luôn đúng với mọi \(x\) thì ta xét các trường hợp :

    TH1: Phương trình \({m^2}{x^3} + {m^2}{x^2} + \left( {{m^2} + m} \right)x + {m^2} + m - 6 = 0\) nghiệm đúng với mọi \(x\) 

    TH2: Đa thức \({m^2}{x^3} + {m^2}{x^2} + \left( {{m^2} + m} \right)x + {m^2} + m - 6\) có nghiệm \(x = 1\)

+) Thử lại và kết luận.

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.