Tìm tham số (m ) để hàm số (y = ((((log )_((1)(2)))x - 2))((((log )_2)x - m)) ) đồng biến trên khoảng (( (0;1) ) ).


Câu 61887 Vận dụng

Tìm tham số \(m\) để hàm số \(y = \dfrac{{{{\log }_{\dfrac{1}{2}}}x - 2}}{{{{\log }_2}x - m}}\) đồng biến trên khoảng \(\left( {0;1} \right)\).


Đáp án đúng: c

Phương pháp giải

Đặt \(t = {\log _2}x\), với \(x \in \left( {0;1} \right) \Rightarrow t \in \left( { - \infty ;0} \right)\) \( \Rightarrow \) Hàm số \(y = \dfrac{{{{\log }_{\dfrac{1}{2}}}x - 2}}{{{{\log }_2}x - m}}\) đồng biến trên khoảng \(\left( {0;1} \right)\) khi và chỉ khi \(y = f\left( t \right)\) đồng biến trên \(\left( { - \infty ;0} \right)\).

Xem lời giải

...

Bài tập có liên quan

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.