Có bao nhiêu số nguyên (m thuộc [ ( - 5;5) ] ) để ( ( min )_([ (1;3) ]) <=ft| ((x^3) - 3(x^2) + m) right| >= 2 ).


Câu 61904 Vận dụng cao

Có bao nhiêu số nguyên \(m \in \left[ { - 5;5} \right]\) để \(\mathop {\min }\limits_{\left[ {1;3} \right]} \left| {{x^3} - 3{x^2} + m} \right| \ge 2\).


Đáp án đúng: b

Phương pháp giải

Xét hàm số \(y = f\left( x \right) = {x^3} - 3{x^2} + m\) trên \(\left[ {1;3} \right]\), lập BBT từ đó xét các trường hợp.

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.