Biết rằng (x(e^x) ) là một nguyên hàm của hàm số (f( ( - x) ) ) trên khoảng (( ( - vô cùng ; + vô cùng ) ) ). Gọi (F( x ) ) là một nguyên hàm của (f'( x )(e^x) ) thỏa mãn (F( 0 ) = 1 ), giá trị của (F( ( - 1) ) ) bằng:


Câu 63326 Vận dụng

Biết rằng \(x{e^x}\) là một nguyên hàm của hàm số \(f\left( { - x} \right)\) trên khoảng \(\left( { - \infty ; + \infty } \right)\). Gọi \(F\left( x \right)\) là một nguyên hàm của \(f'\left( x \right){e^x}\) thỏa mãn \(F\left( 0 \right) = 1\), giá trị của \(F\left( { - 1} \right)\) bằng:


Đáp án đúng: a

Phương pháp giải

+) \(x{e^x}\) là một nguyên hàm của hàm số \(f\left( { - x} \right)\) nên \(\left( {x{e^x}} \right)' = f\left( { - x} \right)\).

+) Từ \(f\left( { - x} \right) \Rightarrow f\left( x \right)\).

+) \(F\left( x \right)\) là một nguyên hàm của \(f'\left( x \right){e^x} \Rightarrow F\left( x \right) = \int\limits_{}^{} {f'\left( x \right){e^x}dx} \).

+) Tính \(F\left( x \right),\) từ đó tính \(F\left( { - 1} \right)\).

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.