Cho (f( x ) ) mà đồ thị hàm số (y = f'( x ) ) như hình vẽ bên Bất phương trình (f( x ) > sin ((pi x))(2) + m ) nghiệm đúng với mọi (x thuộc [ ( - 1;3) ] ) khi và chỉ khi:


Câu 63348 Vận dụng cao

Cho \(f\left( x \right)\) mà đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ bên

Bất phương trình \(f\left( x \right) > \sin \dfrac{{\pi x}}{2} + m\) nghiệm đúng với mọi \(x \in \left[ { - 1;3} \right]\) khi và chỉ khi:


Đáp án đúng: b

Phương pháp giải

- Biến đổi bất phương trình về dạng \(g(x)>m\).

- Xét hàm \(y=g(x)\) và tìm GTNN của \(g(x)\).

- Bài toán thỏa khi \(m<\mathop {\min }\limits_{\left[ { - 1;3} \right]} g\left( x \right)\)

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.