Tìm a, b để hàm số (f( x ) = ( (((x^2) + 1))((x + 1)) , ,khi , ,x >= 0 ax + b , ,khi , ,x < 0 right. )  có đạo hàm tại điểm x = 0.


Câu 7877 Vận dụng

Tìm $a, b$ để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} + 1}}{{x + 1}}\,\,khi\,\,x \ge 0\\ax + b\,\,khi\,\,x < 0\end{array} \right.\)  có đạo hàm tại điểm $x = 0.$


Đáp án đúng: d

Phương pháp giải

+) Trước hết hàm số liên tục tại $x = 0.$

+) Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \(x = {x_0}\) là

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} \Leftrightarrow f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{x} = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{x}\)

Xem lời giải

...

Bài tập có liên quan

Nhóm 2K5 ôn thi đánh giá năng lực 2023 miễn phí

facebook

Theo dõi Vừng ơi trên facebook


>> Học trực tuyến Lớp 11 năm học mới trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.