Đạo hàm cấp 4 của hàm số (y = ((2x + 1))(((x^2) - 5x + 6)) ) là :
Câu 7930 Vận dụng
Đạo hàm cấp 4 của hàm số \(y = \dfrac{{2x + 1}}{{{x^2} - 5x + 6}}\) là :
Đáp án đúng: a
Phương pháp giải
+) Với hàm phân thức bậc tử nhỏ hơn bậc mẫu thì ta đưa mẫu số về dạng tích và phân tích phân số thành tổng, hiệu các phấn số dạng \(\dfrac{A}{{ax + b}}\)
+) Tính đạo hàm tổng quát \({\left( {\dfrac{A}{{ax + b}}} \right)^{\left( n \right)}}\)
Xem lời giải
Lời giải của GV Vungoi.vn
\(\begin{array}{l}y = \dfrac{{2x + 1}}{{{x^2} - 5x + 6}} = \dfrac{{2x + 1}}{{\left( {x - 2} \right)\left( {x - 3} \right)}} = \dfrac{7}{{x - 3}} - \dfrac{5}{{x - 2}}\\ \Rightarrow {y^{\left( 4 \right)}} = 7{\left( {\dfrac{1}{{x - 3}}} \right)^{\left( 4 \right)}} - 5{\left( {\dfrac{1}{{x - 2}}} \right)^{\left( 4 \right)}}\end{array}\)
Xét hàm số \(\dfrac{1}{{ax + b}},\,a \ne 0\) ta có :
\(\begin{array}{l}y' = \dfrac{{ - a}}{{{{\left( {ax + b} \right)}^2}}}\\y'' = \dfrac{{a.2\left( {ax + b} \right).a}}{{{{\left( {ax + b} \right)}^4}}} = \dfrac{{2{a^2}}}{{{{\left( {ax + b} \right)}^3}}}\\y''' = \dfrac{{ - 2{a^2}.3{{\left( {ax + b} \right)}^2}.a}}{{{{\left( {ax + b} \right)}^6}}} = \dfrac{{ - 2.3.{a^3}}}{{{{\left( {ax + b} \right)}^4}}}\\....\\{y^{\left( n \right)}} = \dfrac{{{{\left( { - 1} \right)}^n}.{a^n}.n!}}{{{{\left( {ax + b} \right)}^{n + 1}}}}\\ \Rightarrow {\left( {\dfrac{1}{{x - 3}}} \right)^{\left( 4 \right)}} = \dfrac{{{{\left( { - 1} \right)}^4}{{.1}^4}.4!}}{{{{\left( {x - 3} \right)}^5}}} = \dfrac{{4!}}{{{{\left( {x - 2} \right)}^5}}}\\\,\,\,\,\,{\left( {\dfrac{1}{{x - 2}}} \right)^{\left( 4 \right)}} = \dfrac{{{{\left( { - 1} \right)}^4}{{.1}^4}.4!}}{{{{\left( {x - 2} \right)}^5}}} = \dfrac{{4!}}{{{{\left( {x - 2} \right)}^5}}}\\ \Rightarrow {y^{\left( 4 \right)}} = 7{\left( {\dfrac{1}{{x - 3}}} \right)^{\left( 4 \right)}} - 5{\left( {\dfrac{1}{{x - 2}}} \right)^{\left( 4 \right)}} = \dfrac{{7.4!}}{{{{\left( {x - 3} \right)}^5}}} - \dfrac{{5.4!}}{{{{\left( {x - 2} \right)}^5}}}\end{array}\)
Đáp án cần chọn là: a
...