Cho hàm số (f( x ) = a(x^3) + b(x^2) + cx + d ) (với (a, ) (b, ) (c, ) (d thuộc mathbb(R) ) và (a # 0 )) có đồ thị như hình vẽ. Số điểm cực trị của hàm số (g( x ) = f( ( - 2(x^2) + 4x) ) ) là


Câu 83169 Vận dụng

Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) (với \(a,\)\(b,\)\(c,\)\(d \in \mathbb{R}\) và \(a \ne 0\)) có đồ thị như hình vẽ. Số điểm cực trị của hàm số \(g\left( x \right) = f\left( { - 2{x^2} + 4x} \right)\) là


Đáp án đúng: b

Phương pháp giải

- Tính đạo hàm của hàm số \(g\left( x \right)\).

- Giải phương trình \(g'\left( x \right) = 0\), xác định các nghiệm bội lẻ.

- Số nghiệm bội lẻ của phương trình \(g'\left( x \right) = 0\) là số điểm cực trị của hàm số.

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.