Cho hàm số (y = f( x ) ) có đạo hàm trên ( mathbb(R) ) và có đồ thị như hình vẽ bên. Xét hàm số (g( x ) = f( ((x^3) + 2x) ) + m ). Giá trị của tham số (m ) để giá trị lớn nhất của hàm số (g( x ) ) trên đoạn ([ (0;1) ] ) bằng (9 ) là:


Câu 83289 Vận dụng

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên. Xét hàm số \(g\left( x \right) = f\left( {{x^3} + 2x} \right) + m\). Giá trị của tham số \(m\) để giá trị lớn nhất của hàm số \(g\left( x \right)\) trên đoạn \(\left[ {0;1} \right]\) bằng \(9\) là:


Đáp án đúng: d

Phương pháp giải

- Tính đạo hàm của hàm số \(y = g\left( x \right)\). Giải phương trình \(g'\left( x \right) = 0\).

- Tìm giá trị lớn nhất của hàm số trên đoạn \(\left[ {0;1} \right]\) để tìm giá trị của \(m\).

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.