Có bao nhiêu giá trị thực của (m ) để bất phương trình ((4^x) - ( (m + 1) )(2^x) + m < 0 ) vô nghiệm?


Câu 84226 Vận dụng

Có bao nhiêu giá trị thực của \(m\) để bất phương trình \({4^x} - \left( {m + 1} \right){2^x} + m < 0\) vô nghiệm?


Đáp án đúng: c

Phương pháp giải

Đặt \({2^x} = t\,\,\left( {t > 0} \right).\)

Khi đó bất phương trình đã cho \( \Leftrightarrow {t^2} - \left( {m + 1} \right)t + m < 0\,\,\,\left( * \right).\)

Bất phương trình đã cho vô nghiệm \( \Leftrightarrow \left( * \right)\) vô nghiệm hoặc có nghiệm \(t \le 0.\)

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.