Cho hàm số (f( x ) ) có (f( 0 ) = 0 ) và (f'( x ) = (sin ^4)x , , forall x thuộc mathbb(R) ). Tích phân (_0^((pi )(2)) (f( x )) ) bằng:


Câu 84625 Vận dụng

Cho hàm số \(f\left( x \right)\) có \(f\left( 0 \right) = 0\) và \(f'\left( x \right) = {\sin ^4}x\,\,\forall x \in \mathbb{R}\). Tích phân \(\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} \) bằng:


Đáp án đúng: c

Phương pháp giải

- Tìm hàm số \(f\left( x \right) = \int {f'\left( x \right)dx} \).

- Sử dụng giả thiết \(f\left( 0 \right) = 0\) tìm hằng số \(C\).

- Với hàm \(f\left( x \right)\) tìm được, tính \(\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} \).

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.