Cho hình chóp (S.ABCD ) có đáy (ABCD ) là hình bình hành. Gọi (M, , ,N ) lần lượt là trung điểm của các cạnh (AB, , ,BC ). Điểm (I ) thuộc đoạn (SA ). Biết mặt phẳng (( (MNI) ) ) chia khối chóp (S.ABCD )  thành hai phần, phần chứa đỉnh (S ) có thể tích bằng ((7)((25)) ) lần phần còn lại. Tính tỉ số (((IA))((IS)) )?


Câu 85575 Vận dụng cao

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M,\,\,N\) lần lượt là trung điểm của các cạnh \(AB,\,\,BC\). Điểm \(I\) thuộc đoạn \(SA\). Biết mặt phẳng \(\left( {MNI} \right)\) chia khối chóp \(S.ABCD\)  thành hai phần, phần chứa đỉnh \(S\) có thể tích bằng \(\dfrac{7}{{25}}\) lần phần còn lại. Tính tỉ số \(\dfrac{{IA}}{{IS}}\)?


Đáp án đúng: a

Phương pháp giải

- Xác đinh thiết diện của hình chóp cắt bởi \(\left( {IMN} \right)\).

- Phân chia khối đa diện, cùng so sánh với \({V_{S.ABCD}}\).

- Đặt \(\dfrac{{SI}}{{SA}} = x\,\,\left( {0 < x < 1} \right)\), so sánh thể tích phần chứa đỉnh \(S\) với \({V_{S.ABCD}}\), lập và giải phương trình tìm \(x\).

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.