Cho khối trụ có hai đáy là (( O ) ) và (( (O') ) ). (AB, , ,CD ) lần lượt là hai đường kính của (( O ) ) và (( (O') ) ), góc giữa (AB ) và (CD ) bằng ((30^0) ), (AB = 6 ) và thể tích khối tứ diện (ABCD ) bằng 30. Thể tích khối trụ đã cho bằng:


Câu 85891 Vận dụng

Cho khối trụ có hai đáy là \(\left( O \right)\) và \(\left( {O'} \right)\). \(AB,\,\,CD\) lần lượt là hai đường kính của \(\left( O \right)\) và \(\left( {O'} \right)\), góc giữa \(AB\) và \(CD\) bằng \({30^0}\), \(AB = 6\) và thể tích khối tứ diện \(ABCD\) bằng 30. Thể tích khối trụ đã cho bằng:


Đáp án đúng: b

Phương pháp giải

Gọi \(A',\,\,B'\) lần lượt là hình chiếu của \(A,\,\,B\) lên đường tròn \(\left( O \right)\).

      \(C',\,\,D'\) lần lượt là hình chiếu của \(C,\,\,D\) lên đường tròn \(\left( {O'} \right)\).

- Phân chia khối đa diện: \({V_{AC'BD'.A'CB'D}} = {V_{ABCD}} + {V_{A.A'CD}} + {V_{B.B'CD}} + {V_{C.C'AB}} + {V_{D.D'AB}}\), chứng minh \({V_{A.A'CD}} = {V_{B.B'CD}} = {V_{C.C'AB}} = {V_{D.D'AB}} = \dfrac{1}{6}{V_{AC'BD'.A'CB'D}}\), từ đó tính \({V_{AC'BD'.A'CB'D}}\).

- Tính diện tích tam giác \(OAC'\), sử dụng công thức \({S_{OAC'}} = \dfrac{1}{2}OA.OC'.\sin \angle AOC'\), từ đó suy ra \({S_{AC'BD'}}\).

- Tính chiều cao \(AA'\): \(AA' = \dfrac{{{V_{AC'BD'.A'CB'D}}}}{{{S_{AC'BD'}}}}\).

- Tính thể tích khối trụ có chiều cao \(h\), bán kính đáy \(r\): \(V = \pi {r^2}h\).

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.