Cho tứ diện (ABCD ) có cạnh (AD ) vuông góc với mặt phẳng (( (ABC) ) ), tam giác (ABC ) vuông tại (B ) có cạnh (AB = 3 ), (BC = 4 )và góc giữa (DC ) và mặt phẳng (( (ABC) ) ) bằng ((45^0) ). Tính thể tích mặt cầu ngoại tiếp tứ diện.


Câu 85943 Vận dụng

Cho tứ diện \(ABCD\) có cạnh \(AD\) vuông góc với mặt phẳng \(\left( {ABC} \right)\), tam giác \(ABC\) vuông tại \(B\) có cạnh \(AB = 3\), \(BC = 4\)và góc giữa \(DC\) và mặt phẳng \(\left( {ABC} \right)\) bằng \({45^0}\). Tính thể tích mặt cầu ngoại tiếp tứ diện.


Đáp án đúng: c

Phương pháp giải

- Chứng minh tam giác \(BCD\) vuông tại \(B\), từ đó tìm tâm mặt cầu ngoại tiếp tứ diện.

- Xác định góc giữa \(DC\) và \(\left( {ABC} \right)\) là góc giữa \(DC\) và hình chiếu của \(DC\) lên \(\left( {ABC} \right)\).

- Sử dụng định lí Pytago, tính chất tam giác vuông cân tính bán kính mặt cầu.

- Tính thể tích khối cầu có bán kính R là : \(V = \dfrac{4}{3}\pi {R^3}\).

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.