Cho hàm số y = f( x ) có đạo hàm trên ( (a;b) ). Nếu f'( x ) đổi dấu từ âm sang dương qua điểm (x_0) thuộc ((a;b) ) thì


Câu 92 Nhận biết

Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\left( {a;b} \right)$. Nếu $f'\left( x \right)$ đổi dấu từ âm sang dương qua điểm ${x_0}$ thuộc \((a;b)\) thì


Đáp án đúng: b

Phương pháp giải

Nếu $\left\{ \begin{gathered}f'\left( x \right) < 0,\forall x \in \left( {{x_0} - h} \right) \hfill \\f'\left( x \right) > 0,\forall x \in \left( {{x_0} + h} \right) \hfill \\ \end{gathered}  \right.$  thì ${x_0}$ là một điểm cực tiểu của hàm số.

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.