Giả sử y = f( x ) có đạo hàm cấp hai trên ( (a;b) ). Nếu ( begin(gathered)f'( ((x_0)) ) = 0 hfill f''( ((x_0)) ) > 0 hfill end(gathered)  right. thì 


Câu 93 Nhận biết

Giả sử $y = f\left( x \right)$ có đạo hàm cấp hai trên $\left( {a;b} \right)$. Nếu $\left\{ \begin{gathered}f'\left( {{x_0}} \right) = 0 \hfill \\ f''\left( {{x_0}} \right) > 0 \hfill \\ \end{gathered}  \right.$ thì 


Đáp án đúng: a

Phương pháp giải

a) Nếu $\left\{ \begin{gathered} f'\left( {{x_0}} \right) = 0 \hfill \\f''\left( {{x_0}} \right) > 0 \hfill \\ \end{gathered}  \right.$ thì ${x_0}$ là một điểm cực tiểu của hàm số.

b) Nếu $\left\{ \begin{gathered}f'\left( {{x_0}} \right) = 0 \hfill \\f''\left( {{x_0}} \right) < 0 \hfill \\\end{gathered}  \right.$ thì ${x_0}$ là một điểm cực đại của hàm số.

Xem lời giải

...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.