Phương pháp viết phương trình tiếp tuyến của đồ thị hàm số

1. Kiến thức cần nhớ

Cho hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \({x_0}\). Khi đó:

- Hệ số góc của tiếp tuyến tại điểm \({x_0}\) là:

\(k = f'\left( {{x_0}} \right)\)

- Phương trình tiếp tuyến của đồ thị hàm số tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là:

\(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)

2. Một số dạng toán thường gặp

Dạng 1: Tiếp tuyến tại điểm \(M\left( {{x_0};{y_0}} \right)\) thuộc đồ thị hàm số.

Cho hàm số \(\left( C \right):y = f\left( x \right)\) và điểm \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\). Viết phương trình tiếp tuyến với \(\left( C \right)\) tại \(M\).

Phương pháp:

- Bước 1: Tính đạo hàm \(f'\left( x \right)\) và tìm hệ số góc của tiếp tuyến \(k = f'\left( {{x_0}} \right)\).

- Bước 2: Viết phương trình tiếp tuyến tại \(M\): \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\).

Dạng 2: Tiếp tuyến có hệ số góc \(k\) cho trước.

Phương pháp:

- Bước 1: Gọi \(\left( \Delta  \right)\) là tiếp tuyến cần tìm có hệ số góc \(k\).

- Bước 2: Giả sử \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm. Khi đó \({x_0}\) thỏa mãn \(f'\left( {{x_0}} \right) = k\).

- Bước 3: Giải phương trình trên tìm \({x_0} \Rightarrow {y_0} = f\left( {{x_0}} \right)\).

- Bước 4: Phương trình tiếp tuyến cần tìm là: \(y = k\left( {x - {x_0}} \right) + {y_0}\).

Dạng 3: Tiếp tuyến đi qua một điểm.

Cho đồ thị hàm số \(\left( C \right):y = f\left( x \right)\) và điểm \(A\left( {a;b} \right)\). Viết phương trình tiếp tuyến với \(\left( C \right)\) biết tiếp tuyến đi qua \(A\).

Phương pháp:

- Bước 1: Gọi \(\Delta \) là đường thẳng qua \(A\) và có hệ số góc \(k\). Khi đó \(\Delta :y = k\left( {x - a} \right) + b\)

- Bước 2: Để \(\Delta \) là tiếp tuyến của \(\left( C \right) \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) = k\left( {x - a} \right) + b\\f'\left( x \right) = k\end{array} \right.\)  có nghiệm.

- Bước 3: Giải hệ phương trình trên tìm \(k\), thay vào ta được phương trình tiếp tuyến cần tìm.

- Hệ số góc của tiếp tuyến với \(\left( C \right)\) tại điểm \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\) là \(k = f'\left( {{x_0}} \right)\).

- Cho đường thẳng \(d:y = {k_d}x + a\).

+) \(\Delta  \bot d \Rightarrow {k_\Delta }.{k_d} =  - 1 \Leftrightarrow {k_\Delta } =  - \dfrac{1}{{{k_d}}}\)

+) \(\Delta //d \Rightarrow {k_\Delta } = {k_d}\)

+) \(\left( {\Delta ,d} \right) = \alpha  \Rightarrow \tan \alpha  = \left| {\dfrac{{{k_\Delta } - {k_d}}}{{1 + {k_\Delta }.{k_d}}}} \right|\)

+) \(\left( {\Delta ,Ox} \right) = \alpha  \Rightarrow {k_\Delta } =  \pm \tan \alpha \)

Luyện bài tập vận dụng tại đây!