Phương pháp giải bài tập sóng cơ - Các đại lượng đặc trưng cơ bản của sóng cơ học

I. Bảng tóm tắt các đại lượng đặc trưng của sóng cơ

II. Phương pháp giải bài tập sóng cơ - Các đại lượng đặc trưng cơ bản của sóng cơ học

DẠNG  BÀI: TÌM CHU KỲ, TẦN SỐ, BƯỚC SÓNG, ĐỘ LỆCH PHA GIỮ HAI ĐIỂM TRÊN PHƯƠNG TRUYỀN

Phương pháp:

- Chu kỳ \(\left( T \right)\) , vận tốc \(\left( v \right)\) , tần số \(\left( f \right)\) , bước sóng \((\lambda )\) liên hệ với nhau :

\(f = \frac{1}{T};\lambda  = vT = \frac{v}{f};v = \frac{{\Delta s}}{{\Delta t}}\) với \(\Delta s\)  là quãng đường sóng truyền trong thời gian \(\Delta t\).

- Quan sát hình ảnh sóng có n ngọn sóng liên tiếp thì có n - 1 bước sóng. Hoặc quan sát thấy từ ngọn sóng thứ n đến ngọn sóng thứ m (m > n) có chiều dài l thì bước sóng: \(\lambda  = \frac{l}{{m - n}}\)

- Số lần nhô lên trên mặt nước là N trong khoảng thời gian t giây thì \(T = \frac{t}{{N - 1}}\)

- Độ lệch pha giữa hai điểm cách nguồn một khoảng xM, xN:

\(\Delta {\varphi _{MN}} = \omega \frac{{{x_N} - {x_M}}}{v} = 2\pi \frac{{{x_N} - {x_M}}}{\lambda } = 2\pi \frac{d}{\lambda }\)  trong đó: \({x_N} - {x_M} = d\)  

  • Nếu 2 điểm M và N dao động cùng pha thì:

\(\Delta {\varphi _{MN}} = 2k\pi  <  =  > 2\pi \frac{d}{\lambda } = 2k\pi  <  =  > d = k\lambda \).      \(({\rm{ }}k \in Z{\rm{ }})\)

  • Nếu 2 điểm M và N dao động ngược pha thì:

\(\Delta {\varphi _{MN}} = (2k + 1)\pi  <  =  > 2\pi \frac{d}{\lambda } = (2k + 1)\pi  <  =  > d = (2k + 1)\frac{\lambda }{2}\).  \(({\rm{ }}k \in Z{\rm{ }})\)

  • Nếu 2 điểm M và N dao động vuông pha thì:

\(\Delta {\varphi _{MN}} = (2k + 1)\frac{\pi }{2} <  =  > 2\pi \frac{d}{\lambda } = (2k + 1)\frac{\pi }{2} <  =  > d = (2k + 1)\frac{\lambda }{4}\). \(({\rm{ }}k \in Z{\rm{ }})\)

Đơn vị của \(x,{\rm{ }}{x_1},{\rm{ }}{x_2},d,\lambda ,v\) phải tương ứng với nhau.

Luyện bài tập vận dụng tại đây!