Các bài toán về mối quan hệ giữa hai đường thẳng

I. Vị trí tương đối giữa hai đường thẳng

Cho \(d,d'\) là các đường thẳng có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} ,M \in d,M' \in d'\) . Ta có:

+) \(d \equiv d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} ,\overrightarrow {MM'} \) đôi một cùng phương \( \Leftrightarrow \left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right] = \overrightarrow 0 \)

Hai đường thẳng trùng nhau

+) \(d//d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} \)  cùng phương nhưng \(\overrightarrow u ,\overrightarrow {MM'} \) không cùng phương \( \Leftrightarrow \left\{ \begin{array}{l}\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \overrightarrow 0 \\\left[ {\overrightarrow u ,\overrightarrow {MM'} } \right] \ne \overrightarrow 0 \end{array} \right.\)

Hai đường thẳng song song

+) \(d\) cắt \(d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} \) không cùng phương và \(\overrightarrow u ,\overrightarrow {u'} ,\overrightarrow {MM'} \) đồng phẳng \( \Leftrightarrow \left\{ \begin{array}{l}\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \overrightarrow 0 \\\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'}  = 0\end{array} \right.\)

Hai đường thẳng cắt nhau

+) \(d\) chéo \(d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} ,\overrightarrow {MM'} \)  không đồng phẳng \( \Leftrightarrow \left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'}  \ne 0\)

Hai đường thẳng chéo nhau

Ngoài ra, ta có thể giải hệ phương trình của hai đường thẳng để xét vị trí tương đối của hai đường thẳng:

+) Nếu hệ có nghiệm duy nhất thì \(d\) cắt \(d'\).

+) Nếu hệ vô số nghiệm thì \(d \equiv d'\).

+) Nếu hệ vô nghiệm thì:

\(d//d'\)  nếu \(\overrightarrow u  = k\overrightarrow {u'} \) hay \(\overrightarrow u ,\overrightarrow {u'} \) cùng phương.

\(d\) chéo \(d'\) nếu \(\overrightarrow u  \ne k\overrightarrow {u'} \) hay \(\overrightarrow u ,\overrightarrow {u'} \) không cùng phương.

II. Khoảng cách và góc

a) Khoảng cách từ điểm \(A\) đến đường thẳng \(d'\)

\(d\left( {A,d'} \right) = \dfrac{{{S_{ANN'M'}}}}{{AN}} = \dfrac{{\left| {\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]} \right|}}{{\left| {\overrightarrow {u'} } \right|}}\)

Khoảng cách từ điểm đến đường thẳng

b) Khoảng cách giữa hai đường thẳng:

\(d\left( {\Delta ,\Delta '} \right) = \dfrac{{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'} } \right|}}{{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]} \right|}}\)

c) Góc giữa hai đường thẳng có các VTCP lần lượt là: \(\overrightarrow u ,\overrightarrow {u'} \): 

$\cos \varphi  = \left| {\cos \left( {\overrightarrow u ,\overrightarrow {u'} } \right)} \right| = \dfrac{{\left| {\overrightarrow u .\overrightarrow {u'} } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow {u'} } \right|}}$

Luyện bài tập vận dụng tại đây!