Giải bài toán bằng cách lập hệ phương trình

I. Các bước giải bài toán bằng cách lập hệ phương trình

Phương pháp:

Bước 1. Lập hệ phương trình:

- Chọn các ẩn số và đặt điều kiện thích hợp cho các ẩn số;

- Biểu diễn các đại lượng chưa biết theo các ẩn và các đại lượng đã biết;

-Lập hệ phương trình biểu thị mối quan hệ giữa các đại lượng

Bước 2. Giải hệ phương trình vừa thu được.

Bước 3. Kết luận

-Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thỏa mãn điều kiện của ẩn.

- Kết luận bài toán.

II. Toán liên quan đến mối quan hệ giữa các số

Phương pháp:

Ta thường sử dụng các kiến thức  sau:

+) Biểu diễn số có hai chữ số : $\overline {ab}  = 10a + b$ trong đó

$a$ là chữ số hàng chục và $0 < a \le 9$, $a \in \mathbb{N}$,

$b$ là chữ số hàng đơn vị và $0 \le b \le 9,b \in \mathbb{N}$.

+) Biểu diễn số có ba chữ số: $\overline {abc}  = 100a + 10b + c$ trong đó

$a$ là chữ số hàng trăm và $0 < a \le 9$, $a \in \mathbb{N}$,

$b$ là chữ số hàng chục và $0 \le b \le 9,b \in \mathbb{N}$,

$c$ là chữ số hàng đơn vị và $0 \le c \le 9,c \in \mathbb{N}$.

III. Toán chuyển động

Phương pháp:

Ta thường sử dụng các công thức $S = v.t$, $v = \dfrac{S}{t},t = \dfrac{S}{v}$

Với $S:$ là quãng đường, $v:$ là vận tốc, $t$: thời gian

IV. Toán làm chung công việc

Phương pháp:

Một số lưu ý khi giải bài toán làm chung công việc

- Có ba đại lượng tham gia là: Toàn bộ công việc , phần công việc làm được trong một đơn vị thời gian (năng suất) và thời gian.

- Nếu một đội làm xong công việc trong $x$ ngày thì một ngày đội dó làm được $\dfrac{1}{x}$ công việc.

- Xem toàn bộ công việc là $1$ (công việc).

Luyện bài tập vận dụng tại đây!