Phương pháp quy nạp toán học và dãy số

I. Phương pháp quy nạp toán học

1. Kiến thức cần nhớ

Bài toán:

Gọi \(P\left( n \right)\) là một mệnh đề chứa biến \(n\left( {n \in {N^*}} \right)\). Chứng minh \(P\left( n \right)\) đúng với mọi số tự nhiên \(n \in {N^*}\).

Phương pháp quy nạp toán học:

- Bước 1: Chứng minh \(P\left( n \right)\) đúng với \(n = 1\).

- Bước 2: Với \(k\) là một số nguyên dương tùy ý, giả sử \(P\left( n \right)\) đúng với \(n = k \ge 1\), chứng minh \(P\left( n \right)\) cũng đúng khi \(n = k + 1\).

Đối với bài toán chứng minh \(P\left( n \right)\) đúng với mọi \(n \ge p\) với \(p\) là số tự nhiên cho trước thì:

- Bước 1: Chứng minh \(P\left( n \right)\) đúng với \(n = p\).

- Bước 2: Với \(k \ge p\) là một số nguyên dương tùy ý, giả sử \(P\left( n \right)\) đúng với \(n = k\), chứng minh \(P\left( n \right)\) cũng đúng khi \(n = k + 1\).

Ví dụ: Chứng minh \({n^7} - n\) chia hết cho \(7\) với mọi \(n \in {N^*}\).

Giải:

Đặt \(P\left( n \right) = {n^7} - n\).

- Với \(n = 1\) thì \(P\left( 1 \right) = {1^7} - 1 = 0 \vdots 7\) nên \(P\left( 1 \right)\) đúng.

- Giả sử mệnh đề đúng với \(n = k \in {N^*}\), tức là \(P\left( k \right) = \left( {{k^7} - k} \right) \vdots 7\).

Ta phải chứng minh mệnh đề đúng với \(n = k + 1\), tức là: \(P\left( {k + 1} \right) = {\left( {k + 1} \right)^7} - \left( {k + 1} \right) \vdots 7\)

Ta có:

\(\begin{array}{l}{\left( {k + 1} \right)^7} - \left( {k + 1} \right) = C_7^0.{k^7} + C_7^1.{k^6} + C_7^2.{k^5} + C_7^3.{k^4} + C_7^4.{k^3} + C_7^5.{k^2} + C_7^6.k + C_7^7 - \left( {k + 1} \right)\\ = {k^7} + 7{k^6} + 21{k^5} + 35{k^4} + 35{k^3} + 21{k^2} + 7k + 1 - k - 1 = \left( {{k^7} - k} \right) + 7\left( {{k^6} + 3{k^5} + 5{k^4} + 5{k^3} + 3{k^2} + k} \right)\end{array}\)

Do \({k^7} - k \vdots 7\) và \(7\left( {{k^6} + 3{k^5} + 5{k^4} + 5{k^3} + 3{k^2} + k} \right) \vdots 7\) nên \(P\left( {k + 1} \right) = {\left( {k + 1} \right)^7} - \left( {k + 1} \right) \vdots 7\).

Vậy mệnh đề đã cho đúng.

2. Một số dạng toán thường gặp

Dạng 1: Chứng minh mệnh đề.

Phương pháp:

Sử dụng phương pháp quy nạp toán học đã nêu ở trên.

Dạng 2: Tìm công thức tổng quát cho tổng dãy số.

Phương pháp:

- Bước 1: Dự đoán công thức tổng quát cho tổng dãy số.

- Bước 2: Sử dụng phương pháp quy nạp toán học để chứng minh công thức vừa dự đoán.

II. Định nghĩa dãy số

- Hàm số \(u\) xác định trên tập hợp các số nguyên dương \({N^*}\) được gọi là một dãy số (dãy số vô hạn).

- Dãy số xác định trên tập hợp gồm \(m\) số nguyên dương đầu tiên ta cũng gọi là dãy số (dãy số hữu hạn).

Các số hạng trong dãy: \({u_1} = u\left( 1 \right),{u_2} = u\left( 2 \right),...,{u_n} = u\left( n \right),...\)

$u_1$ là số hạng thứ nhất (số hạng đầu)

$u_2$ là số hạng thứ hai.

...

$u_n$ là số hạng thứ n.

Với dãy số hữu hạn có $m$ số hạng thì $u_m$ còn được gọi là số hạng cuối.

Kí hiệu: Người ta thường kí hiệu dãy số \(u = u\left( n \right)\) bởi \(\left( {{u_n}} \right)\) và gọi \({u_n}\) là số hạng tổng quát của dãy số đó.

Ví dụ:

a) Hàm số $u(n)=\dfrac{1}{n}$ xác định trên tập $\mathbb{N^*}$ là một dãy số vô hạn.

Các số hạng là: $u_1=1,u_2=\dfrac{1}{2},u_3=\dfrac{1}{3},...$

b) Hàm số $u(n)=n^2$ xác định trên tập $X=\left\{1;2;3;4;5 \right\}$ là một dãy số hữu hạn. 

Các số hạng là: $ u_1=1,u_2=2^2=4,u_3=3^2=9,$$u_4=4^2=16,u_5=5^2=25$.

1 là số hạng đầu, 25 là số hạng cuối.

III. Các cách cho một dãy số

- Cách 1: Cho dãy số bởi công thức của số hạng tổng quát.

Ví dụ: Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \dfrac{1}{{n + 2}}\).

- Cách 2: Cho dãy số bởi hệ thức truy hồi (hay còn nói Cho dãy số bằng quy nạp).

Ví dụ: Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 2.{u_{n - 1}}\).

- Cách 3: Diễn đạt bằng lời cách xác định mỗi số hạng của dãy số.

Ví dụ: Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n}\) là diện tích của hình vuông cạnh $n (cm)$.

IV. Dãy số tăng, dãy số giảm

Định nghĩa:

- Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số tăng nếu ta có \({u_{n + 1}} > {u_n}\) với mọi \(n \in {\mathbb{N}^*}\)

- Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số giảm nếu ta có \({u_{n + 1}} < {u_n}\) với mọi \(n \in {\mathbb{N}^*}\)

Không phải mọi dãy số đều chỉ tăng hoặc giảm.

Có những dãy số không tăng cũng không giảm như \({u_n} = {\left( { - 3} \right)^n}\) tức là \( - 3;9; - 27;81;...\)

V. Dãy số bị chặn

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn trên nếu tồn tại một số \(M\) sao cho

\({u_n} \le M,\forall n \in {N^*}\)

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn dưới nếu tồn tại một số \(m\) sao cho

\({u_n} \ge m,\forall n \in {N^*}\)

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số \(M,m\) sao cho

\(m \le {u_n} \le M,\forall n \in {N^*}\)

Luyện bài tập vận dụng tại đây!