Các dạng toán về phép trừ và phép chia

I. Áp dụng tính chất tổng và hiệu để tính nhanh

Phương pháp:

  Áp dụng một số tính chất sau đây:

- Tổng của hai số không đổi nếu ta thêm vào ở số hạng này và bớt đi ở số hạng kia cùng một số đơn vị.

Ví dụ 1:

$99 + 46 = \left( {99 + 1} \right) + \left( {46 - 1} \right) $$= 100 + 45 = 145.$

- Hiệu của hai số không đổi nếu ta thêm vào một số bị trừ và số trừ cùng một số đơn vị.

Ví dụ 2:

$315 - 97 = \left( {315 + 3} \right)-\left( {97 + 3} \right) $$= 318 - 100 = 218$

II. Tìm số chưa biết trong một đẳng thức (phép trừ)

Phương pháp:

+ Muốn tìm một số hạng trong phép cộng hai số, ta lấy tổng trừ số hạng kia.

+ Muốn tìm số bị trừ ta lấy hiệu cộng với số trừ.

+ Muốn tìm số trừ ta lấy số bị trừ trừ đi hiệu.

III. Áp dụng tính chất của phép nhân và phép chia để tính nhanh

Phương pháp:

+ Muốn tìm số bị chia ta, ta lấy thương nhân với số chia.

+ Muốn tìm số chia, ta lấy số bị chia chia cho thương.

Ví dụ:

Tìm số tự nhiên \(x\) biết:

a) \(1236:x = 12\)

b) \(x:5 = 123\)

Giải:

a) \(1236:x = 12\)

\(\begin{array}{l}x = 1236:12\\x = 103\end{array}\)

b) \(x:5 = 123\)

\(\begin{array}{l}x = 123.5\\x = 615\end{array}\)

Luyện bài tập vận dụng tại đây!