Hình vuông – Tam giác đều – Lục giác đều

I. Hình vuông

1.Nhận biết hình vuông

Bốn cạnh bằng nhau: \(AB = BC = CD = DA;\)

Hai cạnh đối \(AB\) và \(CD;\) \(AD\) và \(BC\) song song với nhau;

Hai đường chéo bằng nhau: \(AC = BD;\)

Bốn góc ở các đỉnh \(A,{\rm{ }}B,{\rm{ }}C,{\rm{ }}D\) là góc vuông.

2.Vẽ hình vuông

Ví dụ: Vẽ bằng ê ke hình vuông \(ABCD\), biết độ dài cạnh bằng \(7{\rm{ }}cm\).

Bước 1. Vẽ theo một cạnh góc vuông của ê ke đoạn thẳng AB có độ dài bằng \(7{\rm{ }}cm\).

Bước 2. Đặt đỉnh góc vuông của ê ke trùng với điểm A và một cạnh ê ke nằm trên AB, vẽ theo cạnh kia của ê ke đoạn thẳng AD có độ dài bằng \(7{\rm{ }}cm\).

Bước 3. Xoay ê ke rồi thực hiện tương tự như ở Bước 2 để được cạnh BC có độ dài bằng \(7{\rm{ }}cm\).

Bước 4. Vẽ đoạn thẳng CD.

II. Tam giác đều

1. Nhận biết tam giác đều

Trong tam giác đều:

+ Ba cạnh bằng nhau

+ Ba góc bằng nhau.

Ví dụ:

Tam giác đều \(ABC\) có:

+ Ba cạnh bằng nhau: \(AB = BC = CA\).

+ Ba góc ở các đỉnh \(A,B,\,C\) bằng nhau.

2. Vẽ tam giác đều

Cách vẽ tam giác đều cạnh \(a\,(cm)\) bằng thước và compa:

Bước 1. Dùng thước vẽ đoạn thẳng AB = a cm

Bước 2. Lấy A làm tâm, dùng compa vẽ một phần đường tròn có bán kính AB

Bước 3. Lấy B làm tâm, dùng compa vẽ một phần đường tròn có bán kính BA; gọi C là giao

điểm của hai phần đường tròn vừa vẽ.

Bước 4. Dùng thước vẽ các đoạn thẳng AC và BC.

III. Lục giác đều

Lục giác đều \(ABCDEF\) có:

- Sáu đỉnh A, B, C, D, E, F

- Sáu cạnh bằng nhau: \(AB = BC = CD = DE = EF\).

- Sáu góc ở các đỉnh A, B, C, D, E, F bằng nhau.

- Ba đường chéo chính bằng nhau \(AD = BE = CF\).

Chú ý:

Cho hình lục giác đều \(MNPQRH\) như hình vẽ:

- MP, PR, MR, NQ, QH, HN được gọi là các đường chéo phụ của hình lục giác đều.

- Độ dài các đường chéo phụ bằng nhau.

- Các đường chéo chính cắt nhau tại 1 điểm.

- Mỗi góc của hình lục giác đều bằng \({120^0}\).

IV. Sơ đồ tư duy Hình vuông - Tam giác đều - Lục giác đều

Luyện bài tập vận dụng tại đây!