Nhân, chia các số hữu tỉ

I. Các kiến thức cần nhớ

1. Nhân hai số hữu tỉ

Với \(x = \dfrac{a}{b};\,y = \dfrac{c}{d}\,\left( {b,d \ne 0} \right)\) ta có: \(x.y = \dfrac{a}{b}.\dfrac{c}{d} = \dfrac{{a.c}}{{b.d}}\) .

2. Chia hai số hữu tỉ

Với \(x = \dfrac{a}{b};\,y = \dfrac{c}{d}\,\left( {b,d \ne 0;\,y \ne 0} \right)\) ta có: \(x:y = \dfrac{a}{b}:\dfrac{c}{d} = \dfrac{a}{b}.\dfrac{d}{c} = \dfrac{{a.d}}{{b.c}}\)

Qui tắc: Ta có thể nhân, chia hai số hữu tỉ bằng viết chúng dưới dạng phân số rồi áp dụng quy tắc nhân, chia phân số.

Ví dụ: \(3,5.\left( { - 1\dfrac{2}{5}} \right) = \dfrac{7}{2}.\dfrac{{ - 7}}{5} = \dfrac{{ - 49}}{{10}}\)

3. Tính chất

 Phép nhân số hữu tỉ có các tính chất của phép nhân phân số:

+ Tính chất giao hoán: \(a.b = b.a\)

+ Tính chất kết hợp: $\left( {a.b} \right).c = a.\left( {b.c} \right)$

+ Nhân với số 1: \(a.1 = a\)

+ Tính chất phân phối của phép nhân đối với phép cộng: $a.\left( {b + c} \right) = a.b + a.c$

+ Mỗi số hữu tỉ khác 0 đều có một số nghịch đảo.

Chú ý: Thương của phép chia số hữu tỉ \(x\) cho số hữu tỉ \(y\) \(\left( {y \ne 0} \right)\) gọi là tỉ số của hai số \(x\) và \(y\). Kí hiệu là \(\dfrac{x}{y}\) hay \(x:y\)

II. Các dạng toán thường gặp

Dạng 1: Nhân chia các số hữu tỉ

Phương pháp:

Viết các số hữu tỉ dưới dạng phân số

Áp dụng qui tắc nhân-chia phân số

Rút gọn kết quả nếu có thể

Dạng 2: Thực hiện phép tính. Tính giá trị biểu thức

Phương pháp:

+ Nắm vững các qui tắc thực hiện phép tính, chú ý đến dấu kết quả.

+ Đảm bảo thứ tự thực hiện phép tính.

+ Chú ý vận dụng các tính chất trong trường hợp có thể

Dạng 3: Tìm x

Phương pháp:

Tìm mối quan hệ giữa các số hạng, thừa số trong phép tính. Thực hiện các phép nhân chia, cộng trừ các số hữu tỉ để tìm \(x.\)

Luyện bài tập vận dụng tại đây!