Các hằng đẳng thức đáng nhớ (tiếp)

1. Các kiến thức cần nhớ

d. Lập phương của một tổng

\({\left( {A + B} \right)^3} \) \(= {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\)

Ví dụ: \({\left( {x + 2} \right)^3} = {x^3} + 3{x^2}.2 + 3x{.2^2} + {2^3} \) \(= {x^3} + 6{x^2} + 12x + 8\)

e. Lập phương của một hiệu

\({\left( {A - B} \right)^3} \) \(= {A^3} - 3{A^2}B + 3A{B^2} - {B^3}\)

Ví dụ: \({\left( {x - 2} \right)^3} = {x^3} - 3{x^2}.2 + 3x{.2^2} - {2^3} \) \(= {x^3} - 6{x^2} + 12x - 8\)

f. Tổng hai lập phương

\({A^3} + {B^3} = \left( {A + B} \right) \left( {{A^2} - AB + {B^2}} \right)\)

Ví  dụ: \({x^3} + 8 = {x^3} + {2^3} = \left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)\)

g. Hiệu hai lập phương

 \({A^3} - {B^3} = \left( {A - B} \right)\left( {{A^2} + AB + {B^2}} \right)\)

Ví dụ: \({x^3} - 8 = {x^3} - {2^3} = \left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)\)

2. Các dạng toán thường gặp

Dạng 1: Rút gọn biểu thức

Phương pháp:

Sử dụng hằng đẳng thức và phép nhân các đa thức để khai triển và rút gọn biểu thức

Dạng 2: Tìm \({\bf{x}}\)

Phương pháp:

Dùng các hằng đẳng thức và phép nhân các đa thức để biến đổi về dạng tìm \(x\) thường gặp.

Dạng 3: Tính giá trị biểu thức tại \(x = {x_0}\) hoặc tính giá trị của biểu thức thỏa mãn điều kiện cho trước

Phương pháp:

Dùng hằng đẳng thức và phép nhân đa thức để biến đổi biểu thức cho trước

Thay \(x = {x_0}\) vào biểu thức rồi tính giá trị của nó hoặc sử dụng điều kiện của giả thiết.

Luyện bài tập vận dụng tại đây!