banner redirect homepage

Phương trình quy về phương trình bậc hai

I. Sơ đồ tư duy phương trình quy về phương trình bậc hai

II. Phương trình quy về phương trình bậc hai

1. Các kiến thức cần nhớ

a. Phương trình trùng phương

+)  Phương trình trùng phương là phương trình có dạng   ax4+bx2+c=0(a0)

+) Cách giải: Đặt ẩn phụ t=x2(t0)để đưa phương trình về phương trình bậc hai:  at2+bt+c=0(a0).

b. Phương trình chứa ẩn ở mẫu thức

Để giải phương trình chứa ẩn ở mẫu thức, ta có các bước giải như sau:

Bước 1. Tìm điều kiện xác định của ẩn của phương trình.

Bước 2. Quy đồng mẫu thức hai vế rồi khử mẫu.

Bước 3. Giải phương trình vừa nhận được ở bước 2.

Bước 4. So sánh các nghiệm tìm được ở bước 3 với điều kiện xác định và kết luận.

c. Phương trình đưa về dạng phương trình tích

Để giải phương trình đưa về dạng tích, ta có các bước giải như sau:

Bước 1. Phân tích vế trái thành nhân tử, vế phải bằng 0.

Bước 2. Xét từng nhân tử bằng 0 để tìm nghiệm.

2. Các dạng toán thường gặp

Dạng 1: Giải phương trình trùng phương

Phương pháp:

Xét phương trình trùng phương ax4+bx2+c=0(a0).

Bước 1. Đặt t=x2(t0) ta được phương trình bậc hai: at2+bt+c=0(a0).

Bước 2. Giải phương trình bậc hai ẩn t , thay t trở lại phép đặt ra tìm được các nghiệm của phương trình đã cho.

Dạng 2: Giải phương trình chứa ẩn ở mẫu thức

Phương pháp:

Để giải phương trình chứa ẩn ở mẫu thức, ta có các bước giải như sau:

Bước 1. Tìm điều kiện xác định của ẩn của phương trình.

Bước 2. Quy đồng mẫu thức hai vế rồi khử mẫu.

Bước 3. Giải phương trình vừa nhận được ở bước 2.

Bước 4. So sánh các nghiệm tìm được ở bước 3 với điều kiện xác định và kết luận.

Dạng 3: Phương trình đưa về dạng phương trình tích

Phương pháp:

Để giải phương trình đưa về dạng tích, ta có các bước giải như sau:

Bước 1. Phân tích vế trái thành nhân tử, vế phải bằng 0.

Bước 2. Xét từng nhân tử bằng 0 để tìm nghiệm.

Dạng 4: Giải phương trình bằng cách đặt ẩn phụ

Phương pháp:

Bước 1. Tìm điều kiện xác định (nếu có)

Bước 2. Đặt ẩn phụ và giải phương tình theo ẩn mới

Bước 3. Tìm nghiệm ban đầu và so sánh với điều kiện xác định ở bước 1 để kết luận nghiệm.

Dạng 5: Giải phương trình chứa căn thức

Phương pháp:

Bước 1: Điều kiện xác định

Bước 2: Làm mất dấu căn bằng cách đặt ẩn phụ hoặc lũy thừa hai vế sau đó giải phương trình.

Bước 3: So sánh điều kiện và kết luận nghiệm.

Dạng 6: Một số dạng khác

Phương pháp:

Ta có thể dùng hằng đẳng thức, thêm bớt hạng tử, hoặc đánh giá hai vế… để giải phương trình.

Luyện bài tập vận dụng tại đây!

DÀNH CHO 2K6 – LỘ TRÌNH ÔN THI ĐÁNH GIÁ NĂNG LỰC 2024!

Bạn đăng băn khoăn tìm hiểu tham gia thi chưa biết hỏi ai?

Bạn cần lộ trình ôn thi bài bản từ những người am hiểu về kì thi và đề thi?

Bạn cần thầy cô đồng hành suốt quá trình ôn luyện?

Vậy thì hãy xem ngay lộ trình ôn thi bài bản tại ON.TUYENSINH247:

  • Hệ thống kiến thức trọng tâm & làm quen các dạng bài chỉ có trong kỳ thi ĐGNL
  • Phủ kín lượng kiến thức với hệ thống ngân hàng hơn 15.000 câu hỏi độc quyền
  • Học live tương tác với thầy cô kết hợp tài khoản tự luyện chủ động trên trang

Xem thêm thông tin khoá học & Nhận tư vấn miễn phí - TẠI ĐÂY