Bài toán tiết kiệm (Thể thức lãi kép có kỳ hạn)

Một người gửi vào ngân hàng số tiền \(A\) đồng, lãi suất \(r\) mỗi tháng theo hình thức lãi kép, gửi theo phương thức có kì hạn \(m\) tháng. Tính số tiền cả vốn lẫn lãi mà người đó nhận được sau \(N\) kì hạn?

Phương pháp:

Bài toán này tương tự bài toán ở trên, nhưng ta sẽ tính lãi suất theo định kỳ \(m\) tháng là: \(r' = m.r\).

Sau đó áp dụng công thức \({T_N} = A{\left( {1 + r'} \right)^N}\) với \(N\) là số kì hạn.

Trong cùng một kì hạn, lãi suất sẽ gống nhau mà không được cộng vào vốn để tính lãi kép.

Ví dụ: Một người gửi tiết kiệm \(100\) triệu vào ngân hàng theo mức kì hạn \(6\) tháng với lãi suất \(0,65\% \) mỗi tháng. Hỏi sau \(10\) năm, người đó nhận được bao nhiêu tiền cả vốn lẫn lãi, biết rằng người đó không rút tiền trong \(10\) năm đó.

Giải:

- Số kỳ hạn \(N = \dfrac{{10.12}}{6} = 20\) kỳ hạn.

- Lãi suất theo định kỳ \(6\) tháng là \(6.0,65\%  = 3,9\% \).

Số tiền cả vốn lẫn lãi người đó có được sau \(10\) năm là: \(T = 100{\left( {1 + 3,9\% } \right)^{20}} = 214,9\) (triệu)