Bội và ước của một số nguyên

Cho \(a,b \in \mathbb{Z}\). Nếu \(a \vdots b\) thì ta nói \(a\) là bội của \(b\) và \(b\) là ước của \(a\).

Nhận xét:

- Nếu \(a\) là bội của \(b\) thì \( - a\) cũng là bội của \(b\).

- Nếu \(b\) là ước của \(a\) thì \( - b\) cũng là ước của \(a\).

Chú ý: Khi \(c\) vừa là ước của \(a\), vừa là ước của \(b\) thì \(c\) được gọi là ước chung của \(a\) và \(b\).

Kí hiệu ước chung của hai số nguyên \(a,\,b\) là ƯC(a, b).

Ví dụ 1:

a) \(5\) là một ước của \( - 30\) vì \(\left( { - 30} \right) \vdots 5\).

b) \( - 42\) là một bội của \( - 7\) vì \(\left( { - 42} \right) \vdots \left( { - 7} \right)\).

Ví dụ 2:

a) Các ước của 4 là: \(1;\, - 1;\,2;\, - 2;\,4;\, - 4\).

b) Các bội của 8 là: \(0;\,8;\, - 8;\,16;\, - 16;...\)

Ví dụ 3:

Ta thấy \(1;\, - 1;\,2;\, - 2\) vừa là ước của \(6\), vừa là ước của \(4\) nên chúng gọi là ước chung của \(6\) và \(4\).

Khi đó ta viết: ƯC(6; 4)={1;-1;2;-2}.