Độ chính xác của một số gần đúng

Vì không biết số đúng \(\overline{a}\) nên không thể biết chính xác sai số tuyệt đối của số gần đúng \(a\).

Tuy nhiên có thể đánh giá sai số tuyệt đối \(∆_a = |\overline{a} - a| ≤ d\) (sai số tuyệt đối không vượt quá \(d\)).

Khi đó ta có:

\(-d ≤ a-\overline{a} ≤ d\) hay \(a-d ≤ \overline{a}≤ a+d\) và ta nói \(a\) là số gần đúng của số \(\overline{a}\) với độ chính xác \(d\) và viết \(\overline{a} = a±d\).